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NASA TT F-10,8L8

COMBINED APPROXIMATION METHOD FOR ENERGY CALCULATION IN /913

THE MANY-EIECTRON PROBLEM*

H.Hellmann®

An approximation formula for the quantum-mechanical many-
body problem is developed for the energy calculation of
many-electron configurations, based on utilization of spectro-
scopic data for quantitative chemical analyses. The method

is a combination of the Thomas-Fermi statistical distribution
and the Schrodinger equation, applying the former to the atom
rumpf and the latter to the valence electrons. Application
of the method to the binding energy of K, yields only 37% of
the true energy and 39% for KH, with the main reason for the
energy deficiency being neglect of the orbital motion coupling
of electrons due to their interaction. Mathematical develop-
ment of the method is given for the K, and the KH molecule as
typical examples.

1. Introduction

It is known that quantum mechanics has been able to "solve in principle®
the chemical fundamental problems. However, despite numerous qualitative re-
sults, an unambiguous quantitative application of the theory, except for a few
limiting cases, to practical chemical problems has never been possible, and the
chemist is usually forced to continue using the old models for obtaining a more
or less quantitative systematics of the great multiplicity of experimental data.
It is by no means a function of theory to recalculate all empirical data indi-
vidually. DNevertheless, one can expect that the theory should furnish a simple,
although rough, theoretical scheme which would interconnect the various proper-
ties of atoms without excessive ambiguity and permit reducing practical problems
of the chemical behavior of atoms to measurable atomic properties of as uni-
versal as possible a character. The present paper is to make some progress in
this direction.

Since, in the final analysis, all properties of a given atom are quantita-
tively reflected in its spectrum, it 1s logical to attempt using the extensive

spectroscopic material on atoms, for deriving and quantitatively formulating
the chemical properties. We will make an attempt here to develop an approxima-

* A preliminary report on the results of this investigation was published previ-
ously (Ref.l).

1) Karpov Institute for Physical Chemistry, Moscow.
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tion formula for the quantum-mechanical many-body problem® which is to permit,
in a simple manner, the use of spectroscopic data for obtaining quantitative
chemical data.

The process consists in a combination of two methods for determining the
energy and density distribution in the atom, namely the Thomas-Fermi™™" statisti-
cal distribution and the Schrodinger equation. The rumpf of the atom will /91
be treated according to the Thomas-Fermi method and the valence electrons accord-
ing to the Schrddinger process. For both together, there exists a variational
problem of the form

SH=30+4 T = af(u_+ T)dr=0, (1)

where_U resp. T denote the potential and the kinetic energy per unit volume, so
that H represents the total energy. This energy must be made a minimum which
can be done, when using the Thomas~Fermi method, by selecting the total density
distribution p (Ref.3) and, when using the Schrddinger process, by selecting the
eigenfunction ¥. This leads, in the one case, to the Thomas-Fermi differential
equation and, in the other case, to the Schrodinger equation.

2+ Remarks on Application of the Th~-F Theory to Few Electrons

Before further developing the variational problem, it is necessary to settle
a few questions with respect to the applicability of the statistical method to
only a few electrons. Strictly speaking, the assumptions of this approximation
method, namely a large number of electrons in a singled-out partial volume of
such a size that the potential is practically constant therein, does not actual-
ly exist. Nevertheless, down to a few electrons, more or less useful results
are obtained; even for the case of a single electron, the results are still not
meaningless. Since it is of importance for our specific purpose to understand
the sense and usefulness of the Thomas-Fermi arguments in the presence of a very
small number of electrons, we will precede the actual problem by a few general
considerations.

First, let us recall that the significance of density distribution p in the
Thomas-Fermi method differs from that in the Schrodinger process. In the former
case, we conceive the individual electrons - although only within the uncertainty
produced by their finite space requirement in the phase space - as being local-
ized and, so long as sufficient particles are present, speak of a continuous /915
density function in the conventional thermodynamic sense. This density distri-
bution p loses its meaning if only a single particle is present. Iet us compare
the statements of the two theories for both cases: 1) infinitely many electrons,
2) one electron located in a potential box with impermeable walls. It is known
that, in the former limiting cases, the statements coincide for the total kinetiec
energy of the system, namely

% The principle of this approximation method was reported previously (Ref.3).

¥¥% Below, abbreviated as Th-F.
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(2)

where p is the total density of all electrons and V the total volume of the box.
In the case of one electron, the wave mechanics, provided that the box - for
simplicity - is assumed as rectangular with an edge length a, will furnish the
following expression for the total energy in the lowest state:

342 "

E=8a’m N (3)

The corresponding density distribution reads

. 8 .= o =
O*Y = — T —x. 3 9 ‘
yFy=r; sin axsm aysm 2% | (L)

Recalling the derivation of T(p) by means of the Pauli principle, it should be
expected that entirely meaningless results are obtained for a single electron.
Nevertheless, if the Th-F expression is formally applied to the single electron,
the kinetic energy density will be

: 3A* (3 \
T iom () 7 (5

This is not all meaningless for the single electron. To bring eq.(3) into a
form corresponding to that of eq.(5), let us introduce, into the wave-mechanical
formula, a "mean density ger unit volume" p’/ = 1/a® and a "mean kinetic energy
per unit volume" T/ = E/a®. Hence

3 3’ 3
7'—-837,;—'-=3-§-h'; s -reSp.lEg‘%%_ ‘,"73.33{ (6)

This makes it possible to compare the two equations (5) and (6), showing /916

primarily that they have the proportionality of T with -Z— ¢ resp. T/ with

2
21 p’a'E3 in common. From this it follows that we must assign to T and p in the

Thomas-Fermi method, for the case of a single electron, the significance of a
"mean" energy resp. particle density. The quantities p’and T/, as indicated in
eq.(6), by no means agree with the wave-mechanical expressions {*§ and

P % ! e Vi - ry*ayar.
o y"AV. Only the total energy T V is the same as - f¢ Ayd
However, quantitatively the value of T/ and thus of E, in the strict
formula (6), is about five times as high as that obtained by the Thomas-Fermi
method. It can be assumed that this error of the statistical method exists also
in systems consisting of more than one electron but that it will diminish with
increasing number of electrons since, in the limiting case of infinitely many



electrons, both theories coincide. That the Thomas—Fermi method furnishes rela-
tively good results for the total energy in the case of a small number of elec-
trons is due to the fact that the error of too low a kinetic energy is partly
compensated by an error in the potential energy which acts in the opposite

sense and vanishes similarly with increasing mmber of electrons.

It is generally known that, in the Th-F theory, the potential energy is
expressed not only by the energy of the charge cloud in the external field but
also by the total interaction of this cloud with itself. However, in wave
mechanics, the sum of interactions of each electron with the contribution to the
total charge distribution furnished by this electron itself must be deducted
again. This error becomes negligible only in the limiting case of infinitely
many electrons. Consequently, in the Thomas-Fermi method one calculates with
an everywhere too large potential energy function U(p) and an everywhere too
small function T(p). In both cases, the percentual error becomes greater the
less electrons are present. Obviously, the fact that both errors partially
compensate each other is responsible for the finding that the Thomas-Fermi argu-
ments are still useful for the energy calculation of systems of relatively few
electrons.

3. Substantiation of a Combined Approximation Method /917

We can now start with our actual task, namely that of resolving the general
variational problem (1) into two subproblems. The one portion, consisting of a
relatively large number of electrons, is assumed to represent completely closed
configurations in the sense of statistical theory, i.e., a closed atom rumpf or
a sum of such rumpfs that practically do not interact. Iet the contribution of
this portion to the total density distribution be almost independent of whether
the remaining electrons, i.e., the "valence electrons" are present or not. For
the valence electrons, into which we include the total charges outside of the
closed rumpfs, it is assumed that their density contribution in the region of
the rumpfs is small in comparison with the density p, produced by the rumpf
electrons themselves.

let us assume that the rumpf problem itself is solved. Consequently, we
have to do with the density distribution p, as well as with U(p, ) and T(po )
which make the integral H, = I[U(p) + T(p)ldT, under the auxiliary condition
pdT = N, a minimum. We now add to this system the relatively low charge A, of
he valence electrons® which are normed to prdT = n and then seek the energy
and density distribution of the entire system.

The original density distribution then changes in two different ways. On
the one hand by the fact that the density distribution pg of the rumpfs, under
maintenance of the norming, is modified somewhat ("polarization" of the rumpf by
the valence electrons). This component is denoted by 8po, and I@podf = 0 1is

valid for it. This modified density distribution of the rumpfs is superposed,
however, by the additional density A, of the valence electrons with IApdT = n.

* Actually, we only assume smallness of A, in the region in which p, differs
from zero, i.e., in the atom rumpfs.
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Expanding p in Taylor series and making use of the smallness of the density
variation (6p + Ap), the energy of the system with valence electrons will read /918

A= [ [ v6o+70 (S + 3 ) a0+
H(gt)le "

Here, the integral over U(py ) + T(po ) is simply the energy H, of the rumpfs

alone. The integral j ( gg + gg; >6pd¢ vanishes since p, has been selected
0
such that this vanishing takes place for each allowed minor variation 6p, com-
patible with the boundary and auxiliary conditions. Accordingly, the vanishing
of the integrand takes place only for the neutral atom and then only if strict
solutions of the Thomas-Fermi differential equation for py are used. For ions,
the integrand is a constant (# 0); see also (Ref.}). If the Th-F solutions are
modified by admitting only certain pq as competition, for example those suffi-
ciently vanishing at infinity (Ref.5), then the integrand will no longer vanish
for the neutral atom whereas the entire integral does vanish. The assumption
that &p is sufficiently small for permitting a restriction to the first term of
the Taylor expansion is based on general knowledge of the shell structure of
atoms. Details of the shell structure, such as the existence of fully closed
rumpfs, are not reflected by the Th-F theory. This empirical fact can be intro-
duced as an expansion and improvement of the theory, by assuming that also terms
with (8p)° are still small in comparison with the higher powers of Ap, which
will be taken into consideration below. Terms with 8pAp, finally, can be con-

ceived as being added in first approximation to the integral f ( g:; + gg; .
* MpdT, by assuming slightly modified 2;; and gg; . For the moment, however,
we will restrict the calculation to the first term of the series Ap.
In solving the minimum problem for the entire system, at given p, and /919

after separation of the integral with py, the minimum requirement for the com-
ponent of the total energy contributed by the valence electrons will be

= = [[{oUu\ (ar -
e [ () +(25)] e
or, with the known relation
f.a_q_‘Apdt.—:.—fMVoA{ﬁd
opp . :

where V, denotes the entire electrostatic potential field of the rumpfs,
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(70)

If, without consideration of the Pauli principle or of the Fermi statistics,
we had added the valence electrons to the rumpfs for the entire system, then
only the term with -eVy would have occurred under the integral. In that case,
we would have found that, under the influence of the high positive potential in
the rumpf, the valence electrons would have penetrated deeply into the rumpf it-
self. That these electrons would not have penetrated completely into the
nucleus would have been due only - similar to the case of the valence electron
of the H atom - by the fact that they themselves possess a finite space require-
ment in the phase space, i.e., a zero-point energy, even if no further electrons
are present. This kinetic energy component, due to the finite momentum width
of each valence electron, does not even occur in eq.(7). The component is of a
higher order in Ap, namely, proportional to (Ap ) ¥. A term with (ap )™ would

be of importance, in first approximation, only if eq.(7) would not contain the

much higher kinetic energy (-%EL— o In the Th-F theory, gg means the maximum
Po o
kinetic energy for one electron, occurring in the studied point of space, /920

whereas eq.(7b) states that the added valence electrons must assume exactly this
maximum kinetic energy if they are to stay within the already existing density

oT
o

consequence of the Pauli principle. Our derivation of eq.(7b) shows that the
forces, due to the Pauli principle respectively to the zero-point pressure of
the rumpf electron cloud, can be approximately considered in the form of an

auxiliary potential to the electrostatic potential field in which the valence
electrons are located.

distribution pg . The auxiliary term

to the potential thus is a direct

In eq.(7b), we also neglected the following:

1) The finite momentum width of the valence electrons themselves since they
were singly-unique imparted the maximal momentum P

or . Py 9T
( P= l/2m m,s1nce§7-n=5;-o-) .

2) The electrostatic mutual interaction of the valence electrons which also
is of a higher order in Ap

et (Ap(1)-Ap(2) .
(~——2—f—-——;:;-,—-—-——dtl df.)o

* We proved above that, for an order-of-magnitude estimate, eqg.(2) for T can be
used even for a single electron provided that p denotes its mean density in the
available space.
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3) The Pauli principle for the valence electrons in interaction. All these
terms are difficult to approximate by statistical means since the nondivisibility
of e is important for this and since in the case of too few electrons, we no
longer can speak of an electron density in the sense of the Thomas-Fermi theory.
These three components of the energy will be formulated from the wave-mechanics
viewpoint; however, it will be stipulated that the entire interaction of the
valence electrons with the rumpfs can be approximately described by the potential

oT
dpo

Even if we retain eq.(?b) as well as the semi-classical concept of the
electron as being a particle localized within the atom, eq.(7b) will already
vield statements going beyond the statements of the Thomas-Fermi theory for an
atom with valence electrons.

field —eVo +

For example, let us apply eq.(7b) to the valence electron of an alkali /921
atom. According to eq.(7b) and to the
N known Thomas~Fermi solutions for an ion
Fdsd Yoo retsi - (Ref.L), the rumpf field into which the
. ‘ T = , valence electron penetrates has the
~21mwit o following consistency: On the outside,
{ 4¢’f”‘f up to a radius r, which is about 4.6 A
for monovalent ions (Ref.,), the Coulomb

Fig.l field —- prevails. Starting from r =
- ; . 1 3T
= ro, the entire field Vy - —z S

remains constant and equal to the potential V, = -%%— at the boundary of the

ion. Figure 1 shows the slope of the potential function for the valence elec-
tron. Obviously, in eq.(7b) minimal energy is obtained if the charge of the
valence electron is brought to the bottom of the potential box sketched in
Fig.l. It is also obvious - going beyond the approximation of eq.(7b) - that

the momentum width of the valence electron will be extremely narrow since the
available space is extremely large, meaning that neglecting a term of the order
of m,stgni‘r,u.deN(Ap)a’23 in the energy is entirely justified. Similarly, an elimina-

2
tion of 22 I (1) - no(2) drpdr, is not only justified but even necessary

2

for improving the Thomas-Fermi formula, since the individual electron has no
interaction with itself. Consequently, the ionization energy of the valence

o®
« This comes

electron, using our approximation, will be obtained as V, =

to 3.1 v, which applies universally to all alkali atoms. In the case of cesium,
where the prerequisites for application of the Th-F differential equation to the
rumpf, i.e., of the potential field shown in Fig.l, are most likely to exist,
the real ionization energy is 3.9 v, i.e., still in fair agreement.

We now will go beyond the Thomas-Fermi theory by adding the originally ne-
glected terms of higher order, that do not explicitly depend on the charge dis-

7



tribution of the rumpfs, to eq.(7b) in the Schrddinger form'™: /922
"B H-—f(—eV—{-—a )Apd=+ |
fU'l{*yd‘:ld-.;...—— 8-:'4mf E‘A‘(!ldtld:!. .sy

where | depends on the coordinates of all valence electrons while U’ is their

(8a)

interaction as a function of the configuration™ . If the expression in paren-
theses under the first integral is denoted by V/, we can write
f V'And: = /2 V/y*doyds,. .., (8b)
. * ‘

where the subscript i means that the total potential function V/ must be written
successively in the coordinates of each electron. This finally yields a varia-
tional problem for the valence electrons which differs from the conventional
type only by the fact that, in addition to the electrostatic field of the rumpf

electrons, a counteracting "auxiliary field" occurs which no longer is of

dpo
electrostatic origin but is defined by the electron configuration in the rumpf
alone.

L. Discussion of the Modified Schrodinger Equation

Our Schrédinger equation for the valence electrons thus has the normal form

[2_87’;'; A,+U(1-2...)]¢=-—.é¢. (9)

4

dT
dpo

+ U', If { is made antisymmetric in the coordinates of the valence electrons, /923
the Pauli principle of these electrons is satisfied. Conversely, no additional
stipulation with respect to the quantum states of the rumpf will occur: The
exclusion principle, which otherwise forces the electrons into external orbits,

has been replaced here by a force that pushes the electrons toward the outside.
Whereas an exclusion principle ~ without antisymmetrization of the total function
respectively without inclusion of all individual functions of the rumpf electrons
into the perturbation problem - can be formulated only for the quantum states of

except for the fact that U contains the auxiliary potential: U = —eV, + +

% This is no formally consequent continuation of the above-started series expan-
sion of the Th~F problem.

¥t This also corrects the interaction of the electrons with themselves which had
been wrong in the Thomas-Fermi theory.
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one valence electron relative to the corresponding rumpf and then only in first
approximation®, the auxiliary potential of each rumpf will affect all valence
electrons of the entire system. As demonstrated on typical examples below, this
fact is extremely important and results in distinct improvements over treatments
of the binding problem that do not at all consider the rumpf itself or only take
its electrostatic effect into consideration and that allow for the Pauli prin-
ciple in the form of an "occupation rule".

A loose analog to this - at first glance rather surprising - replacement
of a quantum rule by introduction of some force is, for example, the fact that,
in the H atom, the kinetic energy produced by the rotational motion, exactly

e 1(t + 1)
8m°m r*

equation for the r-dependent component of the eigenfunction. Here, the quantiza-
tion of the angular momentum forcedly leads to an increase in kinetic energy as
soon as the electron approaches the nucleus.

like an auxiliary potential energy +

, enters the differential

For the moment, the entire theory developed here must be considered as a
tentative method, possibly in the same sense as the Thomas-Fermi method itself,
whose practical applicability to atoms cannot be theoretically fully substanti-
ated. Nevertheless, practical success of the Th-F method has been recorded. /924
However, since we are attempting a considerable improvement of the accuracy ob-
tainable by the Th~F process, our method can be evaluated only on the basis of
the obtained results. We will do this in Sections 6 and 7, after introducing
an important quantitative refinement in Section 5, based on spectroscopical
empirical data. At this point, however, we can already give a few general data
as to the statements of our modified Schrédinger equation for valence electrons.

A serious difficulty in the practical application of the arguments to any
atoms is presented by the fact that the basic term of our modified Schrodinger
equation, because of the spherical symmetry of the potential, always will be an
s term. Consequently, all electrons of an atom outside of completely closed
shells must be considered "valence electrons" in the sense of our arguments.
Despite the fact that an expansion in Ap is justified if the total number of
valence electrons is no longer small, so long as the contribution of these
valence electrons to the density in the rumpf region remains low, a practical
calculation of binding problems is still impossible if too many "valence elec-—
trons" are present. However, it is not the purpose of these rough statistical
arguments for the influence of the rumpf on the valence electrons to give all
fine details of the spectrum produced by the influence of the incomplete shells

# The Pauli principle is exactly satisfied only in Fock's treatment of the many-
electron problem. By adding the Fock exchange terms to the Hartree equations,
the orthogonality of the system of elgenfunctions, which had been lost in
Hartreet's method, is restored if the difference of the shielding field for the
various electrons is taken into account. It must be considered that the Pauli
principle requires more than just the exclusion of multiple occupation of identi-
cal eigenfunctions; in fact, the principle stipulates the occupation of "differ-
ent" eigenfunctions which means, as also indicated by Fock's theory (Ref.6), of
orthogonal eigenfunctions.



on the optical electron. The true field of application of this approximation
method is that of chemical problems, in which it is only a question of defining
the rumpf effect more accurately than can be done by the exclusion principle
alone, under neglect of all interactions with the rumpf.

In the first two groups of the periodic table, the above arguments are
quite useful, in that always only one or two electrons are treated as valence
electrons™.

Above, we considered the cesium valence electron in a semiclassical /925
manner, according to the modified Thomas-Fermi theory. Very little is changed
in the energy by using the corresponding Schrodinger equation for Fig.l. With-
out actual calculation, it can be predicted that, in view of the size of the
potential box, the basic term in this field will be located only slightly above
the bottom of the box. Considering that the valence electron without auxiliary
potential - and without applicability of the exclusion principle - in the
electrostatic field of the rumpf would almost fall into the K shell and during
this process take on an ionization energy of many thousands of volts, an agree~
ment with the measured ionization energy to within about 1 v must be considered
an entirely satisfactory proof for the basic justification of introducing our
auxiliary potential. However, for practical purposes this accuracy is insuffi-
cient; in Section 5, we will give further refinements which are extremely small

in comparison with the total effect of the auxiliary potential

although,
Po

in order of magnitude, they do attain the binding energies calculated with such

atom models.

ILet us first discuss another possible objection. Should one not expect
that our valence function, at least in its general character, would coincide
with the eigenfunction obtained from the Hartree method under application of the
exclusion principle? However, this will never be the case, even if the slope
of the auxiliary potential, used in the example of cesium, is refined further.
This is so since our function, as basic function in the potential field, for
example will never show the nodes of the Hartree function®¥*.

% To obtain a simpler formalism for more complex atoms, in which incomplete
inner shells play a role for their chemical behavior, it might be possible to
include, in the auxiliary potential, terms that depend on the square of the
angular momentum (as operator), so as to allow for the fact that the resistance
offered by a rumpf with incomplete shells to the penetration of a valence elec-
tron will depend not only on the local coordinates of this electron but also on
the square of its angular momentum (i.e., on the momentum quantum number in the
case of the valence electron of the free atom). Conversely, such incomplete
shells can be included into the rumpf. Occasionally, it may be permissible to
retain the exclusion principle in part. We hope to return later to this par-
ticular question.

3% The well-known Slater rule for obtaining nodeless eigenfunctions for the
electrons of an atom can be interpreted in the sense of the combined approxima-
tion method. Here, each electron, as eigenfunction and eigenvalue, (cont'd)
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A comparison of the expressions for the basic term of the valence electron,
formed either with the Hartree solution or with our own solution and the per- /926
taining Hamilton functions, indicates clearly that the two quantities { cannot
be equal since the two Hamilton functions differ greatly from each other while
the ionization energies must be equal. According to Hartree-Fock, the exclusion
principle which stipulates that a certain excited eigenfunction must be used
for §, results in the fact that the integral contribution of the field with high
negative values of H remains negligible since ¢, even in this region, has
small values everywhere. In our case, H is either not negative at all or only
faintly so in the vicinity of the nucleus; for this reason, our valence electron
does not have too low an energy. At a greater distance from the atom rumpf, the
slope of the two eigenfunctions presumably will be similar since, in both cases,
a practically pure Coulomb field is involved. For the same reason, the higher
excited states of the valence electron and the pertaining eigenfunctions will
not differ excessively in either case.

For all energy problems into which the eigenfunction of the electrons enter,
this has no absolute significance independent of the corresponding rumpf. In
using Hartree solutions, so long as one does not change to the many-electron
problem, the existence of states occupied by rumpf electrons must always be
allowed for by auxiliary rules. The treatment of a valence electron as a truly
excited electron with unoccupied ground states almost always leads to errors
since, in any perturbation, a portion of the total charge will enter this un-
occupied space of high negative potential and thus greatly reduce the energy.

In reality, the rumpf electrons block the access of further charge components.

In our case, this is expressed in the auxiliary potential which, in contrast to
the exclusion principle, affects each charge component no matter where it origi-
nates. Conversely, the exclusion principle does not prevent, for example, the
charge cloud belonging to a second atom from partly penetrating into the rumpf

of the first atom. Similar errors are committed if the polarization energy of

a valence electron in the external field is calculated in the same manner as

that of an excited atom with unoccupied inner shells. Despite the exclusion
principle for the valence electron itself, we definitely obtain excessive polari-
zation energies since the formal perturbation calculation always leads to a
strong participation of the - in reality forbidden - rumpf states of high nega~
tive potential energy in the perturbed eigenfunction /927

It is obvious that the eigenfunction of the valence electron, according to
Hartree, has no significance independent of the quantum states of the rumpf,
i.e., that, according to Hartree, no closed one-electron problem is involved
here.

In a comparison of the total charge distribution of the atom, obtained by
calculating the contribution of valence electrons according to Hartree and by

. 27
% (cont'd) is given the fundamental solution in the field - = +
2 e az . N
+ :2 n(n” - 1) where z and n” are determined by the electrostatic effect
8mm

of the deeper lying charges, by the Pauli principle, and by the quantum statis-
tics for the angular momentum.

11



using our approximation solutions for the valence electrons, it must be con-
sidered that, in both cases, one starts from the variational problem, meaning
that the density distribution may show distinct deviations from the real dis-~
tribution no matter how ' accurate ' the calculated energies might be.

As criteria for the usefulness of one or the other description of valence
electrons, the only possibility is to calculate practical examples. James
(Ref.7) demonstrated recently that all investigations, in which satisfactory
results for the binding energy of two atoms were obtained exclusively from the
eigenfunctions of the valence electrons, are based on ad hoc assumptions and
give an entirely erroneous picture of the real conditions. This is so since,
on neglecting the repulsion of all stray valence electrons with the rumpfs, the
energy decreases excessively which makes it appear - for example - as though
practically no polarization forces participated in the binding (for an extensive
literature, see James loc. cit.). In part, exactly as expected, the binding
energy -~ already in first approximation, i.e., without polarization forces -
will be considerably higher than the experimental value (Ref.8). We will return
to these problems in Section 6, when comparing our results with those correctly
calculated by James (Ref.7) on the basis of the many-electron problem.

5. Semiempirical Method

The above-mentioned example of the atom with one valence electron shows that
correction of the Schrddinger equation according to the Thomas-Fermi method, /928
in comparison with the corrected effect which approximately corresponds to the
ionization energy of an electron in the K shell, is quite satisfactory but not
sufficient for calculating terms of the valence electron or binding energies of
two atoms. However, after demonstrating the basic justification of the auxili-
ary potential, there is no objection to using an empirical modified value for

-eVy + —%%%—, so far as feasible. In that case, higher-order terms such as

polarization forces between valence electrons and rumpf are partly included.

As an extensive and accurate empirical data complex, we have the spectra of the
atoms at our disposition. The task consists in finding, from the known terms,

a potential field and an eigenfunction system in which the ground state of the

valence electron appears as the absolutely lowest state.

Along general lines, the form of our potential can already be predicted.
At great distances from the rumpf, we have - except for small polarization cor-
rections which will be disregarded here - a pure Coulomb field. The terms -eV,

and

S produced by the rumpf both will decrease toward the outside, approxi-
Po

mately as the density of the rumpf electrons, i.e., about exponentially and by
one order of magnitude more rapidly than the density of the valence electrons
themselves. At the interior of the rumpf, we will at first disregard any finer
structure of the total potential. This can be done since we are restricted any-
way to approximation arguments which, in the spectroscopic sense, are extremely
rough., It must be made clear that we cannot have the goal of reproducing the
spectrum of an atom with even halfway spectroscopic accuracy; in the subsequent
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application to chemical binding problems, the requirements as to accuracy are
much more modest.

Consequently, we will construct the total potential from the Coulomb func-
tion and from an exponentially rapidly descending function. For the latter, the

type A ¢ —%— e~2*r , among all calculated examples, seemed most suitable. Here,

1/» had about the value of half the orbital radius of the valence electrons and
A was larger than 1, so that the occurrence of a second potential well at r =

~24
=0 in -eVy + gg = - —%— + -Ahgri- was prevented. An argument A/r® - &2*T /929
0

would avoid this in any case; for purely external reasons, namely because of
the fact that the exchange integrals later occurring in the binding problem are
somewhat more convenient, we retained the first argument.

It would be easy to determine the constants in the potential formula and
the eigenfunctions from the spectra, if there would exist strict solutions of
the Schrodinger equation for this potential. However, this is not the case.
Therefore, we are forced to use the Ritz method for obtaining approximation
solutions. At known A and #, the minimum requirements would determine all para-
meters of the eigenfunctions. To define A and u, the known term value of the
basic term and that of the lowest p-term are used. The rapid drop of our
auxiliary potential finally causes the spectrum to become hydrogen-like for the
more excited terms.

On introducing this potential and these eigenfunctions into some perturba-
tion problem, the Ritz method can be used without restriction. However, since
we adjusted A and # such that the basic term of the free atom is obtained cor-
rectly with only approximate eigenfunctions, the auxiliary potential no doubt
will be somewhat too low. This does not matter since the "slightly incorrect®
eigenfunctions will be retained in each of the subsequent perturbation calcula-
tions.

On application of the Ritz method, one can introduce an arbitrary number of
parameters into the actual perturbation calculation; because of the requirement
that A and #u must be so selected that, at vanishing perturbation energy, the
lowest atom terms are correct, one has the assurance that, for each approxima-
tion degree of the eigenfunction, the energy of the free atom - for example,
due to the variational parameters of the perturbation problem - will not drop
below the true basic term.

Finally, we should mention again that the mutual interaction of the rumpfs
is not contained in the previous formulation of the theory. It can be stated
only that this interaction presumably will be of the next higher order relative
to the interaction of the valence electrons with the rumpfs of the other atom.
To take this approximately into consideration, the density distribution pg /930
of the rumpfs should be known. However, as interaction, it is not permitted to
use the potential energy of the density of the one atom in the total field

-eVy + gT of the other atom. Since this field does not have an electrostatic
Po
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origin, the formula energy = "potential" x charge is applicable only for charges
that are small in comparison with the charge py. However, this is no longer the
case when the two rumpfs overlap; rather, there now exist regions in which the
charge of the one atom is high and regions in which that of the other atom is
high as well as regions in which both are equally large. For calculating the
interaction of the two rumpfs as a consequence of the Pauli principle we must
return here to the consequent expression (Ref.5)

358 /3\" : s, g, Sty
Arnm(";) f[(90+’l)(—’o/_pilzldt (lO)

which is transformed into | ppdT only if everywhere p, € p,. This would

oT
pa
be supplemented by the regular electrostatic interaction of the rumpfs. For
the moment, this portion of the total interaction of the two atoms will be com~
pletely disregarded.

The approximation arguments described in this Section can be extended
further. However, they are completely sufficient for obtaining valuable orient—
ing results for simple binding problems. As a typical example, we selected the
K atom and its compounds K; and KH.

6. The K; Molecule

Let us check the usefulness of our arguments on the example of the K; mole~
cule. The potential formula had been discussed above. As eigenfunction for
the valence electron, only the type ry =rPe-€r is actually in question.

This furnishes, in atomic units, the mean kinetic energy in a state with
the angular momentum 1:

P m (r )

The mean potential energy is /931

7= (o (o))

where B and ¢_represent variational parameters whose selection (at given A and
w) makes H =T + U a minimm. For practical reasons, however, we will admit
only integral values for B. In the case in question, B = 1 is the suitable se-
lection, meaning that we are using hydrogen-like functions for the valence elec-
tron of K.

The ground state then furnishes two equations H=FE and g? = 0 for the

three unknowns e, A, n. Instead of using the first excited state with t = 1, we
used our orienting calculations n = 2 = ¢o (here ¢y makes H a minimum), for

1




simplicity. The estimate is reasonable since, as shown above, —éh e *%T must

3
decrease by one order of magnitude more rapidly than p = ir €28r, Thus,

already the known term value E = -0.1596 of the ground state ylelds ¢ = 0.29;

= 0.58; A = 2.743. For the lowest p term and using our n value, the energy
w1ll be by 5% too low; for this reason, n and A should really be selected somewhat
smaller. However, for a first orientation we will retain the original estimate.

In the K; problem, the perturbation energy in the singlet state will read

e e[ [ )

g T 1+s’ [(, 1)(f—- Y u,d:—sf— ecl~¢) 3
+A<f—¢_2"‘*i' 'f.dr——sfr ""’bqa,?dt)] (1)
s= [tidn

3

3
Here, ¥, and {§, denote the eigenfunctions ir g ra and N—S— €*™v, belong- /932

ing to the two atoms. The component W, represents the interaction that would
take place on neglecting the auxiliary potential and the fact that V., §, are

no eigenfunctions of the umperturbed Hamiltonian function. The first expression
in parentheses is the Coulomb interaction and the exchange of the two valence
electrons under the influence of the auxiliary field. The second expression in
parentheses is due to the fact that our initial function represents only an ap-
proximation but no true eigenfunction of the umperturbed atoms. Here, W, is

the known function calculated by Sugiura for Hg; we merely have to multiply his
energy values by € and divide his distances by e¢. The other integrals are easy
to evaluate, for which the reader is referred to the Appendix.

Calculation of W as a function of the nuclear distance R yields a minimum
at R = 4.0 A of —=0.19 v. The experimental values are R = 3.9 4 and W = -0.51 v.
Whereas the distance is more or less correct, the energy in this approximation
of the perturbation calculation is by far too low. The reason mainly lies in
the auxiliary potential; W, alone, at the same distance, is Wy, = -0.71 v which
means that it is even greater than the experimental value of the energy.

The equilibrium distance for W, alone would be 3.0 A at an energy of -0.91 v.
Using Wb exclusively, approximately corresponds to elimination of all rumpf ef-
fects in the conventional perturbation calculus. As expected, the energy will
then become much too low'. The finding that, in considering the rumpf effect,
the obtained energy is much too low agrees excellently with the results obtained

% See the discussion of earlier papers, in which an analogous calculation method
was used by James (loc. cit.); see especially (Ref.7).
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by M.James for Li; in his consequent consideration of the entire rumpf effect
within the scope of a Heitler-lLondon perturbation method. In this approxima-
tion, James obtained only 24 - 29% of the true energy. For the case of Hz,

the corresponding percentage is 67%. Accordingly, it could be expected that
this will decrease further for Ky; in fact, it would not be surprising if the
Heitler-Iondon calculus were to furnish positive energy values for Kz. The fact
that our result, compared to the results by James, is still relatively /933
favorable is due in part to our neglecting the mutual interaction of the rumpfs
or, in part, to a somewhat too favorable auxiliary function and to the fact that
polarization forces between electrons and rumpf were included. We share James!
opinion that the energy deficiency, in higher approximations especially on in-
troducing the interelectron distance, will appear as the coordinate of a varia-
tional problem. Such an argument means that the electrons cannot be permitted
to "revolve" independently of one another. It is exactly at low energies of the
electrons that their mutual repulsion will keep them apart at all times and thus
lead to a considerable diminution of the mean energy. In the case of Hj, this
effect is about 1.5 v (Ref.9). It is true that in the case of K, the two elec-
trons are not compressed into a small space but their zero-point energy is less.
It is entirely plausible to assume an effect of -0.3 v, due to mutual polariza-
tion. The justification of this assumption must be demonstrated by an exact
calculation according to Ritz'! method which should be carried out in approxi-
mately the manner used by James and Coolidge (Ref.l0) for the case of Hz. That
the participation of ionic states and variations of ¢ produce only a negligible
improvement in the energy can be estimated also in our case.

An especially surprising effect discovered by James was the decrease of the
triplet term under the influence of the atom rumpf. However, this effect is ob~
tained automatically in our method since any reduction in the amount of the ex—
change integral means a rise of the singlet and a drop of the triplet term.
Since the contribution of the auxiliary potential to the exchange exceeds the
corresponding diagonal term, the triplet term in our method is lower with an
auxiliary field than without such a field. At 4 A, we obtain a value of only
+0.4 v with an auxiliary potential instead of a value of +0.9 v without such a
potential. James reported that the closed shells influence the exchange inte-
grals of the valence electrons only by the fact that permutations of the elec-
trons higher than simple transpositions are considered here; otherwise, the
rumpfs would enter only additively along with the Coulomb interaction. The fact
that these higher exchange effects are covered by our Thomas-Fermi theory con-
stitutes a strong substantiation for our attempted arguments.

7. The KH Molecule /[93L

As a second example, let us consider the KH molecule. Here, it is necessary
to have homopolar and ionic states participate in the binding. Despite the fact
that the ionic molecule seems more plausible per se, atomic states may play a
certain role in the binding. For ILiH, Hutchisson and Muskat (Ref.ll) found a
correct energy even under the assumption of pure atomic binding. However, for
the calculation method used, the criticism voiced by us and also by James (loc.
cit.) holds. Nevertheless, for the time being, both binding types will be al-
lowed to participate in the KH molecule.
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The homopolar state has the eigenfunction {,(1)¥,(2) + ¥, (1).(2), where

[

3
it is assumed that {, = = &€Ta, §, = V—%; €' . The subscript b thus

characterizes the H atom. The ionic term is somewhat more difficult. The
formula ¢, (1)¥, (2) for this term would constitute too poor an approximation.
Similarly, even the formula Y. (1)y,(2) with a shielded H eigenfunction y, would
still be poor. It is known (Ref.9) that this formula, for the free H, furnishes
an electron affinity of -0.74 v instead of the real +0.712 v. Without introduc-
ing the r,; coordinate, the result can be improved further if, for both elec-
trons of H™, different eigenfunctions are used and if symmetrization is per-
formed, i.e., if ¥, (1)¥q (2) + ¥4 (L)W, (2) is used for the ionic state, where Y,
and ¥, are H eigenfunctions with differing degree of shielding. To prevent ex-
cessive complication of our estimate calculation, we assume the function

3
N iT &€ for Vo, i.e., the same function as for ILi except that we calculate

here from the nucleus b and use the hydrogen function for {,, i.e¢, ¥y = Vy.

This yields the increase in total atomic radius of H™ compared to H; the electron
affinity of the free H™, using these functions, becomes +0.3, v and thus has
considerably approached the real value +0.712 v.

Consequently, our total eigenfunction becomes
¢ =" (1) % ()44 (1) . @) +ol% (1) % (2) + %, (1) % () (12a)

where the coefficient o must be conceived as a variational parameter and must be
so determined that the total energy becomes a minimum.

This is obtained as /935

= P420Q40R
= oo (120)

where P, Q, R denote the following integrals:

P [ s (1 e+ 40 (1% ()] Fi, (09, (2) drdy |
. Q= f[".’. N “t‘e(;z)—l—‘{’,, ny, (2)] H'{:.(tl) Yy (2) drydag | * (120)
R= ./['!" (1) '{'_, @+ ¢.(1) "“i'b (2)] Ry, (1) ‘{J, (2) drdz;

The small values p, Q, r are obtained from the large values P, Q, R by setting
1

e

H = 1. Except for the integral I = j o (1)¥y (L)¥a (2)¥, (2)dTdT, which is

contained in P, the integrals occurring here are entirely elementary and can be

reduced to the simple type given in the Appendix. For the estimate of I, the
reader is again referred to the Appendix.
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As a result, we obtain an equilibrium distance of 2.1 A with an energy of

~-0.8 v. Here, the participation of the ionic state —i4§i75- is 80%. This in
o}

itself would already give -0.7 v and the homopolar state alone would yield,

~0.3 v. The experimental data are as follows: equilibrium distance = 2.2 A;

dissociation energy: 2.06 v.

As in the case of K;, we again obtained only a fraction of the experimental
energy. The reason is the same as before, since the coupling of the electron
motion (for example, measured by a term with ry, in the total eigenfunction) had
been disregarded both in the ionic state and in the homopolar state. However,
we must add here that our calculation employed rather arbitrary eigenfunctions
of the ionic state; in this case, the introduction and variation of shielding
parameters presumably would have led to considerable improvement. Despite the
unfavorable value of the total energy, we are inclined to consider as real the
observed strong participation of the ionic state in the binding.

The attempt at interpreting the KH molecule as a purely ionic molecule also
yields a verification for our statements that the main reason for the energy
deficiency is coupling of the electron motions. This is substantiated by the /936
fact that, for the pure ionic state, we can take the total interaction of the
two electrons from data furnished by other authors, for example by Bethe (Ref.9)
who calculated this interaction, in high approximation, for the free H accord-
ing to Hylleraas. In our subsequent perturbation calculus, we then no longer
use the eigenfunctions of the two electrons but only their total resultant
density distribution. For the latter, we set up another simplified formula,

3
namely p = 2 J%,_ €2% 4+ . Here, o is given a value of 11/16, obtained by

placing both electrons in the same state and seeking the value ¢ that makes the
total energy a minimum. The difference of this distribution from the real
density distribution can be read from the illustration given by Bethe (loc.
cit.). The maximum of the real density distribution is located somewhat farther
inside but for that drops in a somewhat more shallow manner toward the outside.
Presumably, our value of p will be quite useful as an approximate criterion for
the "atomic radius" of H™.

Now, the calculation becomes quite simple. First, the regular Coulomb in-

teraction a = ~ —%ﬁ of two monovalent ions at a distance R must be supplemented
by the known shielding effect due to the finite extent of the charge cloud of

the H™ electrons b = 2 <—%— + a)é‘zaR. Secondly, this must be supplemented

further by the repulsion due to penetration of the H™ charges into the rumpf
of K*: :

al e — 2ar — %R | Aa®  a
c=2-1?A ,_f. e ldt=2e. | F‘:-T;i l—-m +
2Aat — R S (13)

+m, 8' Lo i,
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Finally, the known difference between ionization energy of the K atom and elec-
tron affinity of the H atom must be taken into consideration; this is d =
= h032 - 0-72 = 3060 Ve

Using all four components, an equilibrium distance of 1.9 A (exp: 2.2 A)
and a dissociation energy of 1.95 v (exp: 2.06 v) are obtained. The agreement
is rather satisfactory here; the fact that the distance is somewhat too small
might be attributable to the excessively rapid drop of our p value at large /937
distances. Under application of Bethe's density distribution, the atoms pre-
sumably are forced somewhat apart, and the resultant energy drop can be compen-
sated again by the polarization forces which we had disregarded.

The value of 1.95 v is composed of the following individual components:
a==1/R = 7.52 v;
shielding: b = +0.37 v;
K* rumpf (Pauli principle): ¢ = +1.60 v3
differegce between ionization energy of K and electron affinity of H:
d = +3.60 v.

It is obvious that the "ionic radius" of K, produced by the Pauli principle,
plays a decisive role here. This calculation, at least qualitatively, also con-
firms our concept that the coupling between the motions of both electrons is of
a major importance for the case of weak binding energies.

8. Conclusions

A1l above calculations are of a more or less orienting nature. However,
according to the results obtained it seems useful to construct more precise
formulas for solving the problems and to carry out the higher approximations,
which are somewhat more cumbersome from the computational viewpoint. It can be
hoped to settle activation questions with this method, without requiring an ex-
cessive number of arbitrary assumptions with respect to the interaction functions
involved.

Available empirical data clearly indicate the direction in which the theory
must proceed. Calculations along this line have been started at our Institute
and will later be extended also to other atoms. We have in mind to apply the
described approximation viewpoint to problems of polarizability of atoms and
ions.

Summary: For an approximate treatment of the valence electrons of simple
atoms, a modified Schrodinger equation is derived in which the total influence
of the rumpf is taken into consideration by an auxiliary potential and in which
the exclusion principle does not apply to the valence electrons. Basing the
auxiliary potential on the Thomas-Fermi theory yields correct orders of mag- /938
nitudes, while for practical application potential and eigenfunctions can be
taken from the spectra.

Application to the binding energy of Kz, in the approximation of the

Heitler-london perturbation method, furnishes only 37% of the real energy.
Exactly this result is in excellent agreement with data obtained by James during
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a consequent allowance for rumpf effects according to the Heitler-London method.
For the case of KH, the same approximation yielded 39% of the real energy, at
80% participation of the ionic state. The main reason for the energy deficiency
is the fact that the coupling of the orbital motions of the electrons, due to
their interaction, had been neglected. In the limiting case of pure ionic bind-
ing, this value can be taken from the exact H_  theory, ylelding a binding energy
of 1.95 v (exp: 2.06 v) at a distance of 1.9 A (exp: 2.2 A). The calculations
are being continued.

9. Mathematical Appendix

In addition to the elementary integrals which can be directly evaluated in
spherical coordinates, two other types occur which are carried out in elliptic
coordinates. We are noting these well-known integrals here:

—ur_ _—or
: e s e L]
. f._.__._______ dt=
- ‘ r,

dre™ 24 2v 1 4me B 2v
T R@'—vY) | " u'—vi R—ol)

' f—e_"'- e Tidr=

TR e
03—t

(14)

- ,ng{ e B [4uv+Ro(u—u?)] —e "B (4yv4-Ru(v2—ud) }

To these, most integrals in which r, and r, occur, can be reduced. For example,
we have

[ = @@ dud, =

= ,[_1___‘ +a) e ] "3!.(2')'%(2)4‘;'

ad Tae -

With ¥, and ¥, as exponential functions around the nucleus a resp. b, this will
yield the above-given types of integrals. Difficulties are produced by only /939
one integral:

l-—f "("1""01) i R P dt,
r" .

The literature contains series expansions for this integral (Ref.12), but these
are very cumbersome to handle especially if, as in our case, the convergence is
poor. This leaves no other possibility than to break off the series arbitrarily
after the first terms. For this reason, we prefer an entirely different method
which seems useful for an estimation.

We base the process on the assumption that, for a large domain of R and e,
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the ratio of I to the sums of the analogous integrals, in which
1
Ta1

is replaced

by respectively by —f%;—, remains relatively constant. To verify the
justification of such an assumption, the ratio is calculated according to
Sugiura in the first column of Table 1, for the limiting case ¢ = 1. To esti-
mate the manner in which this ratio varies with ¢, let us consider the other
limiting case ¢ € 1 whose solution can also be given. The interatomic distance
is assumed to be at least so large that the nucleus of the larger atom comes to
lie entirely outside the smaller atom. Under the assumption ¢ <€ 1, the charge

distribution ¢"®% ~"» obviously becomes € “"e"™> gince, in the entire region in
which the factor €' differs noticeably from zero, the other factor € %%a can

be replaced by € &R, Integration yields I = 20c®¢~2€R. Under the mentioned
assumptions, we obtain

s
= (l—f—-l) e~ Wat ) =Wt g0 g’_( +32) Be—R.

]
® 'rll ™

Consequently, the sought ratio T} will become T = —%— —z—g—ﬁ-. This ratio is

shown in column 2 of Table l. It is obvious that the course with R is the same

as at ¢ = 1 and that even the absolute value for average R does not differ much
from the value at ¢ = 1. Finally, we interpolate linearly between e = 0 /9L0
and ¢ = 1, by conclusively writing

S R+2
=T RT2 (15)
TABIE 1
' R M at e = 1 R41/2
(a.u.) (strict) 5l8 R+2 ' 5l8 R+2
. -
2 0.39 0.31 0.39
3 0.42 0.38 0.44
4 . 046 0.42 047
9 % 0.48 0.45 0.49
6 - 0.50 0.47 0.51
10 0.56 0.52 0.55

As e - O and at R » 1, the relation becomes strictly valid; for e = 1,
column 3 of Table 1 shows that the approximation is satisfactory. On applying
this formula to intermediate values of ¢, the error most likely will not be more
than a few percent. We used this estimate above for R = 4.
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